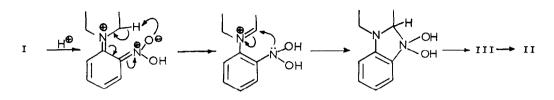

Tetrahedron Letters No. 15, pp. 1229-1234, 1970. Pergamon Press. Printed in Great Britain.

Thermal and Photolytic Cyclisation, Rearrangement, and Denitration Reactions of o-Nitro-t-Anilines

R. Fielden, O. Meth-Cohn and H. Suschitzky Chemistry Department, University of Salford, Salford, Lancashire England.

(Received in UK 6 February 1970; accepted for publication 26 February 1970) o-Nitro-t-Anilines (I) are known to cyclise to the corresponding benzimidazoles (II) under a wide variety of conditions. As early as 1897



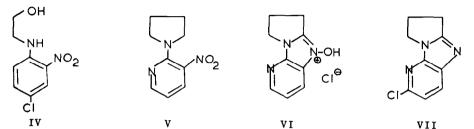
[a	b	с	d	e	f	g	h
2	H	(СН ₂) ₂	(СН ₂) ₃	(сн ₂) ₄	(CH ₂) ₂	(CH ₂) ₄	сн ₂ осн ₂	(CH ₂) ₂
	H	н	н	н	C1	C1	н	NO ₂

Pinnow demonstrated that during the reduction of o-nitrodimethylaniline (Ia) with tin and hydrochloric acid, some l-methylbenzimidazole was produced¹. Since that time the cyclisation of a variety of o-nitro-t-anilines has been accomplished with other transition metal reducing $agents^2$, sodium sulphite³, triethylphosphite⁴, heat⁵, lithium piperidide⁶, lithium aluminium hydride⁷ and ultra violet irradiation of 2,4-dinitrophenyl derivatives of aziridines⁸.

In several of the above methods, the mechanism we have $postulated^{2,4,5}$ requires the intermediate formation of a benzimidazole-N-oxide (III); (see scheme 1) and in order to confirm our proposed pathway we have endeavoured to terminate the reaction at the N-oxide stage. Recently we observed that

the action of hot aqueous mineral acid gave the N-oxides (III) in good yields together with minor products arising from loss or rearrangement of the ortho nitro-group⁹.

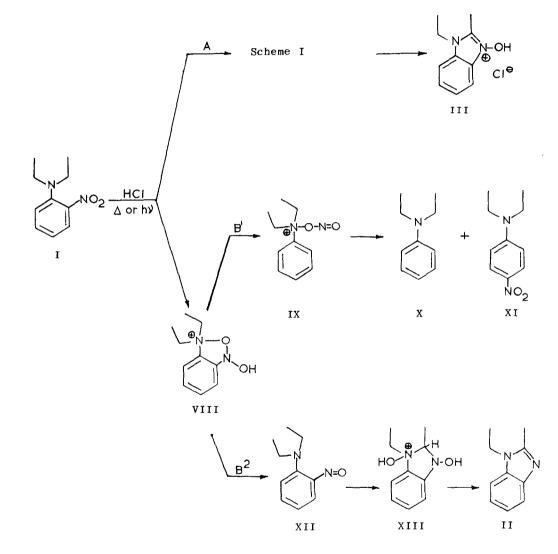
We now wish to report the acid catalysed photo-cyclisation of o-nitrot-anilines to give <u>either</u> benzimidazoles (II) <u>or</u> benzimidazole-N-oxides (III) (see Table). The cyclisation is generally free from side reactions and


TABLE	1
-------	---

Benzimidazoles (II) and benzimidazole-N-oxides (III) prepared by cyclisation of o-nitro compounds (I or V) by photolysis in aqueous methanolic hydrochloric acid¹⁰.

I/V	Reaction	Product	m.p.	Unreacted	Remarks
	Time (hr.)	(Yield, %)	°c	I (%)	
Ib	48	IIIb (78)	145 ⁰	4	1.н ₂ 0
Ic	66	IIc (83)	102	11	
Iq	24	IId (81)	125	2	
Ie	54	IIIe (13)	125	86	1.H ₂ 0
If	65	IIIf (79)	129	10	2. н ₂ 0
Ig	80	111g (55)	130	23	$2.H_2O + IV (17\%)$
v	40	VI (78)	182	2	1.H ₂ 0 + VII (7%)
L					

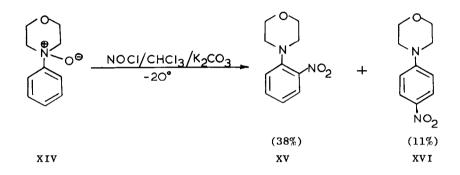
1230


proceeds extremely slowly in the absence of acid. In the case of the morpholine compound (Ig) ring-opening and nuclear chlorination occur to produce (IV). Application of this cyclisation to other aromatic systems has so far only been carried out with the pyridine analogue (V) which gave a

high yield of the corresponding N-oxide (VI) together with the chlorinated product (VII).

Since the benzimidazole-N-oxides (IIIc and d) are photo-stable under the reaction conditions, they are thus not the precursors of the benzimidazoles (IIc and IId). Furthermore, the reactions yield <u>either</u> the benzimidazole (II) <u>or</u> its N-oxide (III), apparently dependent upon a combination of steric (cf. Ib with Ic and Id) and electronic (cf. Id with If) factors.

We propose the following scheme as a plausible mechanism for the thermal and photochemical acid-catalysed reaction (Scheme 2). The thermal or photochemical reaction to yield the N-oxide hydrochloride (route A) proceeds according to Scheme 1). The by-products (X and XI) isolated in the thermal reaction can then be considered to arise from the reduced furoxan intermediate (VIII). This rearranges thermally (route B^1) to the N-nitrite (IX) which, in a manner analogous to the nitramine rearrangement gives the p-nitro-compound (XI), or looses its nitro group to give the denitrated compound (X). The furoxan intermediate may also be invoked to explain the photochemical formation of the benzimidazole (route B^2) by way of the o-nitroso-N-oxide (XII) and the unstable N-oxide (XIII) which by loss of water and oxygen yields the aromatic system (II). The cyclisation (XII-+XIII) has several analogies in our work^{2b}. Evidence for the proposed



Scheme 2

reaction path is as follows:

1. A variety of o-substituted nitrobenzenes undergo oxygen transfer to yield an o-substituted nitrosobenzene and several mechanisms have in fact been proposed involving intermediates analogous to VIII¹¹.

2. The action of the nitrosyl chloride on the N-oxide (XIV) gave predominantly the o-nitrated compound (XV) and the p-isomer (XVI). Phenyl morpholine itself under the same conditions gave mostly the p-isomer.

3. The p-nitro t-anilines are stable to hot acid, showing the necessity for an ortho-t-amine to bring about rearrangement.

4. The rearrangement of the nitro-group appears to be intramolecular since a mixture of o-nitrophenyl pyrrolidine (Ib; 5 gram) and phenyl morpholine (1 gram) gave only p-nitrophenylpyrrolidine and no crossed product. Similarly another mixture of o-nitrophenyl morpholine (Ig; 5 gram) and phenyl pyrrolidine (1 gram) gave p-nitrophenyl morpholine but no p-nitrophenyl pyrrolidine.

We are indebted to the Science Research Council for a grant to (R.F.).

References

- 1. J. Pinnow, Ber., 30, 3119 (1897).
- (a) H. Suschitzky and M.E. Sutton, <u>Tetrahedron</u>, <u>24</u>, 4581 (1968), and refs. cited therein. (b) R.K. Grantham and O. Meth-Cohn, <u>J. Chem</u>. Soc., 1438, (1969) and refs. cited therein.
- 3. W.M. Lauer, M.M. Spring and C.M. Langkammerer, J. Amer. Chem. Soc., 58, 225, (1936).
- 4. H. Suschitzky and M.E. Sutton, J. Chem. Soc., 1968, 1337.
- 5. H. Suschitzky and M.E. Sutton, Tetrahedron Letters, 3933, (1967).
- 6. R. Huisgen and H. Rist, Annalen, 594, 159, (1955).
- 7. O. Meth-Cohn, unpublished results.
- H.W. Heine, G.J. Blosick and G.B. Lowrie III, <u>Tetrahedron Letters</u>, 4801, (1968) (cf. D. Döpp, Chem. Commun., 1284 (1968).
- 9. R. Fielden, O. Meth-Cohn, D. Price and H. Suschitzky, <u>Chem. Commun.</u>, 772 (1969).
- Photolyses were conducted under nitrogen atmosphere with a 200W medium pressure Hanovia mercury lamp, filtered through pyrex on a 0.002Msolution of the nitro-compound in N-hydrochloric acid in 10% aqueous methanol.
- A. Schönberg, G.O. Schenk, O-A. Neumüller, "Preparative Organic Photochemistry", Springer Verlag, Berlin, 1968, p.266.